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ABSTRACT: High-throughput omics data often contain system-
atic biases introduced during various steps of sample processing
and data generation. As the source of these biases is usually
unknown, it is difficult to select an optimal normalization method
for a given data set. To facilitate this process, we introduce the
open-source tool “Normalyzer”. It normalizes the data with 12
different normalization methods and generates a report with
several quantitative and qualitative plots for comparative evaluation
of different methods. The usefulness of Normalyzer is demon-
strated with three different case studies from quantitative
proteomics and transcriptomics. The results from these case
studies show that the choice of normalization method strongly
influences the outcome of downstream quantitative comparisons.
Normalyzer is an R package and can be used locally or through the online implementation at http://quantitativeproteomics.org/
normalyzer.
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■ INTRODUCTION

High-throughput technologies such as DNA microarrays and
mass spectrometry (MS) generate vast amount of information-
rich transcriptomics, proteomics, and metabolomics data. These
technologies have made significant progress in the past decade
enabling detection and expression level quantification of
thousands of genes, proteins, and metabolites in biological
samples. Technical advancement of MS-based instruments in
recent years has increased the detection accuracy and reduced
the data generation time. This enables accurate detection and
quantitative comparison of thousands of proteins from two to
several samples at a time. However, high-throughput omics data
often contain systematic biases introduced during various steps
of sample processing and data generation. Failing to account for
these biases could lead to misleading conclusions from
quantitative analysis. Data normalization, if properly done,
reduces systematic biases and is thus necessary prior to any
downstream quantitative analysis. Different normalization
methods address systematic biases in the data differently, and
thus choosing an optimal normalization method for a given
data set is critical. As the source of systematic bias in the data is
usually unknown, an exhaustive comparative evaluation of both
un-normalized data and the data normalized through different
methods is required to select a suitable normalization method.
For a detailed review on normalization of label-free proteomics
data, refer to Karpievitch et al.1

Different normalization methods for omics data have been
evaluated lately, and it is apparent that different methods

produce considerably different results.2−8 Callister et al.
evaluated four different normalization methods for label-free
proteomics data and concluded that methods based on linear
regression were most optimal but suggested that further
investigation is needed.5 Kultima et al.3 proposed a new
normalization method, RegrRun, which performed best among
10 different methods on peptidomics data. Choe et al.2

evaluated four different normalization methods for DNA-
microarray data and concluded that the LOESS method is most
optimal. Lyutvinskiy et al.9 developed a normalization strategy
for label-free proteomics data to account for fluctuations in the
electrospray ionization in the time domain. Wang et al.10

hypothesized that the missing values in the proteomics data set
are non-random and proposed a two-step approach where data
are first normalized by top 80 order statistics to estimate a
scaling factor for each sample, followed by missing value
imputation taking into account the scaling factor for each
sample. Webb-Robertson et al.8 proposed a statistical selection
strategy called SPANS based on Rank Invariant Peptides and
provided a tool to evaluate different peptide selection methods
for normalization and subsequent normalization with emphasis
on possible bias introduced by the normalization. It is thus
apparent that suitability of a normalization method is
dependent on the intrinsic characteristics of the data.

Received: December 18, 2013
Published: April 28, 2014

Technical Note

pubs.acs.org/jpr

© 2014 American Chemical Society 3114 dx.doi.org/10.1021/pr401264n | J. Proteome Res. 2014, 13, 3114−3120

http://quantitativeproteomics.org/normalyzer
http://quantitativeproteomics.org/normalyzer
pubs.acs.org/jpr


Evaluation of data normalization can be done both
quantitatively and qualitatively. Quantitative analysis is mainly
based on the measure of dispersion around the mean within
and between groups. The most common quantitative measures
are standard deviation (SD), coefficient of variation (CV),
median absolute deviation (MAD), and pooled estimate of
variance (PEV). SD can be either positive or negative and is
described relative to the sample mean, making it difficult to
compare samples with differing mean. Measuring PEV could be
an alternative for comparisons as it is always positive. CV
measures variation as a percentage of mean and thus can be
expressed independently of the mean, making it easier to
compare variability between samples. However, CV is highly
sensitive when the sample mean is close to zero as even low
variation could produce high CV. Moreover, SD, PEV, and CV
are sensitive to outliers. MAD measures the median of the
absolute deviations around the sample median and thus is more
robust and less sensitive to outliers. These methods were used
previously for normalization evaluation of omics data.3,5,7

Qualitative evaluation can be based on boxplots, MA plots,
dendrograms, or correlation plots. Optimally, a normalization
method for a given data set should be selected on the basis of
both quantitative and qualitative evaluation measures and by
further analysis of previously known housekeeping genes or
proteins.
Here, we introduce Normalyzer, a new tool developed to

evaluate the suitability of different normalization methods for a
given data set based on commonly used quantitative and
qualitative parameters. Normalyzer can be used for normalizing
data from DNA microarrays, label-free proteomics, metab-
olomics, targeted mass spectrometry, or quantitative RT-PCR
as long as the data are approximately normally distributed and
are formatted as per the requirements. Normalyzer is fully
automated and outputs normalized data from 12 different
normalization methods along with an evaluation report. It is an

open-source tool and can be run online with a user-friendly
interface or can be installed locally as an R-package. Here, the
usability of Normalyzer is demonstrated with three different
case studies.

■ METHODS

Implementation

Normalyzer is implemented in R using Bioconductor11

packages. The Normalyzer R-package can be downloaded
from (http://quantitativeproteomics.org/normalyzer) and can
be installed locally with R (version 3.0). Installation and usage
instructions can be found at the above URL. An online service
with a graphical user interface is also provided at the Web site.

Data Requirements

Normalyzer accepts data with raw intensities in a tab-separated
format. The raw data should not be in logarithmic scale. Any
number of rows and column annotations can be included if
labeled accordingly. The data set should be relatively large,
preferably at least a few hundred variables, and the observations
need to contain replicate groupings to enable normalization
evaluation. The data can be read in from a text file or as a data
frame to facilitate inclusion of Normalyzer in existing pipelines.
A challenge with shotgun proteomics data is the occurrence

of missing values due either to peptide quantities being below
the detection limit or other technical issues. Imputation of
missing values could in some cases lead to erroneous results
and thus should be done with precaution.

Normalization Methods

Several popular normalization methods are included, such as
total intensity (TI), median intensity (MedI), average intensity
(AI), quantile (preprocessCore package),12 NormFinder13

(NF), Variance Stabilizing Normalization (VSN, vsn pack-
age),14 Robust Linear Regression (RLR), and LOESS (limma

Figure 1. Normalyzer workflow highlighting types of input data, normalization, analysis methods, and final output.
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package).15 These methods are implemented as global
normalization methods (denoted by ‘G’). Furthermore, VSN,
LOESS, and RLR are also implemented as local methods
(denoted by ‘R’) wherein the replicate groups are normalized
separately. Due to computational reasons, NormFinder is
automatically turned off for data sets where the number of
variables with non-missing values is higher than 1000. Missing
values (denoted NA) are tolerated differently by different
normalization methods. Missing values are excluded during the
log2 transformation, TI, MedI, AI, and RLR normalization;
thus, NAs remain NAs even after normalization and only
numerical data are normalized. For determining the control
variables by NormFinder, only variables with no missing values
are considered. For LOESS and VSN normalization, the data
set is processed as-is and all warnings (if any) generated during
LOESS and VSN normalization are saved to the warnings file.
The data normalized by these methods are then evaluated both
quantitatively and qualitatively.

Evaluation Measures

To aid in the selection of an optimal normalization method,
different quantitative and qualitative statistical measures are
considered. The results from these measures are plotted and
saved to the report. Measures include total intensity, total
missing values, Pooled intragroup Coefficient of Variation
(PCV), Pooled intragroup Median Absolute Deviation
(PMAD), Pooled intragroup estimate of variance (PEV), stable
variables plot, CV-intensity plot, dendrograms, Pearson and
Spearman correlation, MA-plots,16 boxplots, density plots, Q-Q
plots, Multidimensional scaling (MDS) plots, meanSD plot,
and Relative Log Expression (RLE) plots as illustrated in Figure
1.

Case Studies

To evaluate the performance of Normalyzer, three different
data sets with varying characteristics were selected. Case studies
1 and 2 contain benchmark data generated by spiked-in
variables at varying concentrations, but with controlled
background and negligible biological variation, whereas case
study 3 contains experimental data with considerable biological
variation.
Case Study 1: LC−MS/MS Proteomics Benchmark

Data. A previously published shotgun proteomics data set17

was used in this case study. The samples consist of 48 human
proteins (UPS1, Sigma) spiked-in at five different known
concentrations (0.25, 0.74, 2.2, 6.7, and 20 fmol/μL) in a
standard yeast lysate. The raw data (OrbitrapO@65) were
downloaded from the CPTAC data portal and were converted
to mzML with MS Numpress compressed binaries (https://
github.com/ms-numpress/ms-numpress) and MGF using
Proteowizard.18 The files were processed in the Proteios
Software Environment (ProSE)19 through a label-free quanti-
tative workflow described previously.20 MS/MS identification
was performed in Mascot Server 2.4.1 (http://www.
matrixscience.com) with a database consisting of S. cerevisiae
proteins from SwissProt (downloaded 20 October 2009) and
the protein sequences found in the Sigma UPS1 protein set,
concatenated with an equal size decoy database. Match
tolerances were 7 ppm for precursors and 0.5 Da for fragments.
Carbamidomethylation of cysteine was used as fixed
modification setting and oxidation of methionine as variable,
and one missed cleavage was allowed. The resulting data set
with raw intensities for 36,484 features was used for evaluation
of normalization methods in Normalyzer.

Case Study 2: DNA Microarray Benchmark Data. A
previously published benchmark data set with 3,860 spiked in
cRNAs generated with Affymetrix GeneChips2 was used to
evaluate Normalyzer performance on array data. The samples
consist of 1,309 cRNAs spiked in at differing concentrations
between S and C samples and 2,551 cRNAs spiked in at
identical relative concentrations. The S and C samples were
hybridized in triplicate to Affymetrix GeneChips (six arrays).
The raw data were downloaded and preprocessed by MAS5 in
R/Bioconductor.11,21 Filtering of probe sets to retain those with
more than one present call in six samples resulted in a final data
set with 4,156 probe sets that was used in Normalyzer.

Case Study 3: LC−MS/MS Proteomics Biological Data.
Shotgun proteomics data generated from the secreted protein
fraction of P. infestans infected leaves of three potato (S.
tuberosum) cultivars from a previous study (Ali et al., submitted,
ProteomeXchange DOI 10.6019/PXD000435) was used as the
third case study. It consists of label-free quantitative mass
spectrometry data with up to five replicates collected just before
infection and at three different time points post-infection.
Sample processing was conducted essentially as described
previously,22 and the data were processed as in Sandin et al.20

with msInspect peptide feature detection.23 The extracted and
aligned features were used for the present study. Singly charged
features and features with missing values in more than 40
samples were excluded. The data with raw intensities for 16,896
features from 60 samples were normalized in Normalyzer.

■ RESULTS AND DISCUSSION

The aim of Normalyzer is to aid in the selection of an optimal
normalization method for a given data set based on quantitative
and qualitative aspects of data variability. Normalyzer can be
run both online with a Graphical User Interface or offline as an
R package. Any type of omics data is supported as long as the
basic data requirements are fulfilled. Normalyzer evaluates the
suitability of 12 normalization methods for the uploaded data
using quantitative and qualitative parameters (Figure 1). It
should be noted that most normalization methods assume that
the majority of variables are relatively stable between samples,
and data that do not fulfill this requirement could be biased
after global normalization. Therefore, methods are also
implemented to normalize locally within replicate groups.
These methods are denoted ‘R’ in the report, while methods
denoted ‘G’ are global. However, for most data sets global
normalization should be the first choice, since local normal-
ization may skew group comparisons.

Output

The output from Normalyzer is a report with quantitative and
qualitative evaluation measures of the normalization outcome.
The total missing value plot and the total intensity plot
summarize raw data characteristics and together with the MDS
plot can be used to identify outlier samples due to sample
degradation or other reasons. The PCV, PMAD, and PEV plots
represent variability within replicates and help in the selection
of normalization methods based on low intragroup variability.
The variability within replicates suggests if the replicates are
well correlated but fail to explore global alignment. In the stable
variables plot, global variance of 5% of least DE variables are
plotted against %PCV compared to log2. This plot helps in the
exploration of both inter- and intragroup variance in the data,
for detection of possible bias introduced during normalization,
as normalization should not introduce variation in these
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variables.8 Qualitative plots such as boxplots, MA plots,
dendrograms, correlation plots, meanSD plot, MDS, and RLE
plots explore data from all samples and guide in the method
selection process. The data normalized by different methods are
also exported together with the report and are ready for
postnormalization analysis. Additional documentation including
a flow chart for the decision-making process and a detailed
explanation of various methods can be downloaded from the
Normalyzer homepage.

Evaluation of Normalyzer

Features and analytical capabilities of Normalyzer were
evaluated by three different case studies. Normalyzer reports
from the three case studies are in the Supporting Information.
Case Study 1. The processed data set contains 36,484

features from a reconstituted yeast proteomics standard spiked-
in with different levels of the Sigma UPS1 equimolar protein

standard. From the Normalyzer report, it is apparent that there
is an almost 3-fold difference in the total intensity between
samples (Figure 2a). This suggests technical variation in the
data set, and thus, normalization of the data set is necessary
prior to quantitative analysis. The Normalyzer report showed
that there was a decrease in PCV by 30−40% in the normalized
data sets compared to un-normalized log2 transformed data
(Figure 2b). Among the global normalization methods, relative-
PCV was lowest (59%) in LOESS-G and VSN-G normalized
data.
Out of 36,484 peptides, 304 peptides were from 43 Sigma

UPS1 proteins. The UPS1 proteins were spiked in known
absolute concentration in a dilution series (0.25, 0.74, 2.2, 6.7,
and 20 fmol/μL). Thus, the spike-in protein set can be used for
estimating the observed and theoretical correlation of log2
transformed peptide intensities. The mean coefficient of

Figure 2. Case study 1. Benchmark data generated by shotgun proteomics. (a) Summed raw intensity from all peptides in each sample. (b) Relative
pooled intragroup coefficient of variation (PCV). For percentage estimation, PCV in the un-normalized log2 transformed data is considered as 100%.
(c) Mean R2 values generated from observed and theoretical values for the UPS1 peptides in the dilution series. (d) Receiver operating
characteristics (ROC) curves generated from the UPS1 proteins from differently normalized data sets with one-way ANOVA. UPS1 proteins were
considered true positives, and the background proteins were considered true negatives.

Figure 3. Case study 2. Benchmark data generated by Affymetrix microarray. (a) Percent PCV averaged over all groups. For percentage estimation,
variability in un-normalized log2 transformed data is considered as 100%. (b) MeanSDplot of VSN-G and VSN-R normalized data. (c) ROC curves
generated from the spiked-in probe sets from differently normalized data sets with one-way ANOVA.
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determination (R2) estimated from the un-normalized log2
transformed data and the theoretical values was 0.81, while
the mean R2 of LOESS-G, RLR-G, and VSN-G was >0.9
(Figure 2c). LOESS-G normalized data had the highest mean
R2 of 0.92, which supports the results from Normalyzer.
Receiver operating characteristic (ROC) curves (Figure 2d)
generated from the detected UPS1 proteins corroborate the
suitability of LOESS-G normalization for this data set. From the
results it is clear that all normalization methods performed
better than just log2 transformation, and also that the choice of
normalization method was of importance for this data set.
Case Study 2. To test the applicability of Normalyzer on

DNA microarray data, a previously published Affymetrix
microarray data set with 4,156 probe sets2 was analyzed using
Normalyzer. Results based on PCV suggested VSN-G and
VSN-R as the most optimal methods for normalizing this data
set (Figure 3a). However, the meanSD plot in the report
showed that VSN-R normalized data contained bias introduced
during the normalization step, leaving VSN-G as the most
optimal normalization method (Figure 3b). As the data set was
generated from spiked-in transcript levels, it was possible to
calculate the ROC curve as an orthogonal evaluation of the
normalization outcome (Figure 3c). The results from Normal-
yzer strongly support VSN-G normalization for this data set,
and this is well in line with the orthogonal ROC calculations.
Interestingly, in this analysis, the LOESS normalization method
used in the original paper was not ranked the best, and this
highlights the benefit of evaluating different normalization
methods for any given data set.
Case Study 3. Finally, Normalyzer was used to select a

normalization method for a shotgun proteomics data set with
large intragroup variation in protein content and signal. Among
the three case studies, this data set shows the highest variation
in the total intensity within replicates (Figure 4a) and missing
values (Figure 4b), indicating a clear need for normalization.
Overall, the replicate samples in the normalized data sets had
reduced variance compared to the log2 transformed data, and

among the global normalization methods, LOESS-G, MedI-G,
and Quantile normalized data had the least relative-PCV
(Figure 4c). Further analysis of the RLE plots from the
Normalyzer report indicate that samples in LOESS-G
normalized data are centered better than the MedI-G and
Quantile normalized data set (Figure 4d). Thus, for this data
set, LOESS-G normalization could be an optimal normalization
method. As there was no a priori information regarding
expected sample protein content we evaluated the data set
using standard statistical methods for quantitative comparisons.
Both one-way ANOVA (Figure 4e) and Kruskal−Wallis test
(Figure 4f) showed that LOESS-G normalized data contained a
higher number of significantly differentially expressed peptides
compared to un-normalized log2 transformed data. Indeed, the
number of peptides passing the statistical tests as significantly
regulated at a constant false discovery rate varied considerably
between the normalization strategies. This highlights the need
for selection of an appropriate normalization strategy, as
downstream processing will be significantly affected by the
choice.

■ CONCLUSION
In conclusion, effectiveness of normalization methods is
dependent on the data, and extensive evaluation of different
methods is necessary before choosing a method. Normalyzer is
developed to aid in this selection process. The Normalyzer
report is designed to help users narrow down the normalization
methods. As seen in case study 2, normalization methods could
sometimes be prone to overfitting, introducing additional bias
to the data. Thus, while evaluating normalization methods,
equal importance should be given to quantitative and
qualitative plots and also to the existing knowledge on
housekeeping genes or protein expression levels. As the tool
is open-source, new normalization methods can be added-in
and can be modified further for compatibility with existing
pipelines. It can also be run in parallel with the SPANS8 tool to
further evaluate peptide selection for normalization.

Figure 4. Case study 3. Biological data generated by shotgun proteomics from P. infestans infected potato leaves. (a) Summed raw intensity from all
peptides in each samples. (b) Summed missing values in samples. (c) Relative PCV. (d) RLE plots for selected data sets. (e) One-way ANOVA
(FDR < 0.05) and (f) Kruskal−Wallis test for statistical significance (FDR < 0.05).
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While the present version of Normalyzer incorporates
normalization methods for log-normally distributed data, the
framework can readily be extended with other normalization
methods that are better suited for count data from RNaseq
experiments. We thus believe that Normalyzer will guide
researchers in selecting the most appropriate normalization
method for their omics data sets.
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